Kedar Krishnan

JHU Biomedical Engineering and Computer Science Senior 1022 Oak Ridge Drive, Horsham PA 19044 + 1 443 983 2467 kkrish13@jh.edu

Education

Johns Hopkins University / 2021 - 2025

B.S. Double major in Biomedical Engineering and Computer Science Dean's List: Fall 2021, Spring 2022, Fall 2022, Spring 2023, Fall 2023, Spring 2024

Cumulative GPA: 3.88

International School of Basel / 2017 - 2021

International Baccalaureate (44 points)

Skills and

Interests

Programming: Python, Java, C, C++, MATLAB, JavaScript (React Native, Vue.js)

Languages: English, Tamil, German (Intermediate Proficiency), Japanese (Intermediate Proficiency), Italian (Beginner Proficiency)

Interests: Tennis, Climbing, Soccer, Photography, Artificial Intelligence

Research Experience

Mao Lab, Institute of Nanobiotechnology - Johns Hopkins University / Jan 2023 - Current

Research assistant at research group led by Prof. Hai-Quan Mao in the Translational Tissue Engineering Center

Focused on enhancing therapeutic efficacy of biomaterials and developing new methods for scalable manufacturing and translation for regenerative medicine applications

- Developed a tunable nanofiber-hydrogel composite (NHC) with adjustable stiffness for enhanced regenerative effects when injected subcutaneously. Built proficiency in hydrogel formulation and material characterization techniques including rheology and SEM.
- Investigated macrophage programming in NHC stimulated tissue response using rat models, conducting macrophage depletion procedures, subcutaneous injections, and immunostaining with confocal imaging.
- Designed and developed NHCs loaded with extracellular vesicles (EVs) from adipose-derived stem cells to promote tissue regeneration in radiation-damaged areas. Designed and executed assays to assess the EV release rate from NHC. Conducted in vivo studies in murine models demonstrating that NHC-EVs promoted cell infiltration, reduction of fibrotic tissue formation, and regeneration of fat and hair follicles.
- Currently leading a project investigating the combination of high and low stiffness hydrogels to enhance structural properties of the matrix as well as enhancing cellular infiltration to promote comprehensive soft-tissue restoration.
- Worked for spin-off company, LifeSprout, Inc., to develop and run a pre-clinical study for Lumina™, a hyaluronic acid-based regenerative dermal filler.

Cellular Engineering Lab - Columbia University / May 2024 - Aug 2024

Summer Research Intern at research group led by Prof. Clark T. Hung in the Department of Biomedical Engineering

Focused on elucidating cellular and tissue-level responses in musculoskeletal systems, with an aim of developing regenerative strategies for load-bearing tissues such as articular cartilage.

- Developed a novel blood-joint transwell system combining human umbilical vein endothelial cells fibroblast-like synoviocytes, and articular chondrocytes to model complex joint space interactions
- Investigated the effects of euglycemic and hyperglycemic conditions on cell viability, inflammation, and extracellular matrix degradation relevant to osteoarthritis and type 2 diabetes mellitus to study interplay between metabolic conditions and joint degeneration.

- Conducted qPCR to analyze gene expression, media assays, immunostaining and microscopy to demonstrate that hyperglycemia promotes ECM breakdown, synovial inflammation, oxidative stress, and altered glucose transport across joint tissues.
- Presented research findings in a poster at the Biomedical Engineering Society Annual Meeting (October 2024).

Friedrich Miescher Institute / Jun 2022 - Jul 2022

Summer Research Intern at research group led by Prof. Prisca Liberali

Focused on investigating cellular heterogeneity during collective cell behavior with an emphasis on intestinal organoid growth

- Assisted in high-resolution imaging studies to investigate the growth and differentiation of intestinal organoids from single cells.
- Designed and optimized multiplexed immunostaining protocols for intestinal organoids, enhancing visualization of cellular morphology and subtypes critical for understanding organogenesis.
- Performed cloning and Cas9-Nickase gene editing to for cell lineage tracking, contributing to understanding the role of stem cells in organoid formation.
- Responsible for seeding, maintaining, and fixing intestinal organoids for staining, followed by confocal microscopy imaging.
- Collaborated on training neural networks and writing supplementary Python scripts to automate image analysis, improving efficiency and reproducibility of data processing.

Publications

Kong, J., Yao, Z., Stelzel, J. L., Yang, Y.-H., Chen, J. F., Feng, H., Schmidt, C., Zhang, C., **Krishnan, K.**, Chen, L., Pan, J., Ding, K., Zhu, Y., Li, X., Doloff, J., Mao, H.-Q., & Reddy, S. (**2024**). *Granular nanofiber-hydrogel composite-programmed regenerative inflammation and adipose tissue formation.* **Advanced Healthcare Materials.** e2403094. doi: 10.1002/adhm.202403094. PMID: 39580666.

Kong, J., **Krishnan**, K., Feng, H., Ding, K., Pan, J., Yang, Y.-H., Hopkins, C., Greco, A., Stelzel, J. L., Velarde, E., Reddy, S. K., & Mao, H.-Q. (**2024**). *Anti-fibrotic extracellular vesicle-loaded nanofiber-hydrogel composite for radiation-induced skin dermatitis prevention*. **Science Advances**. (In submission)

Kong, J., Schmidt, C., Chen, J., Feng, H., **Krishnan, K.**, Ding, K., Yao, Z., Zhang, C., Yang, Y.-H., Stelzel, J. L., Reddy, S. K., & Mao, H.-Q. (**2024**). *Injectable macroporous pore-forming hydrogel matrix for enhanced cell migration and angiogenesis*. (In preparation).

Teaching Experience

Undergraduate Course Assistant / Dec 2023 - Current

Experience

Data Structures & Artificial Intelligence

- Worked approximately 10 hours per week grading homework, exams, and discussion essays, providing detailed feedback to enhance student understanding of complex topics in data structures and artificial intelligence.
- Led bi-weekly office hours to assist students with core concepts such as algorithms, tree structures, graphs, dynamic programming, search algorithms, and neural networks.
- Worked closely with other course assistants to design assignments and exams that reinforce key learning objectives and challenge students' problem-solving skills.

Biomedical Engineering Mentor / Jan 2023 - Current

CTO and Founding member of student venture working with Johns Hopkins Medical Institute

- Guided freshman students in acclimating to the JHU environment, offering advice on academic, social, and personal aspects of university life.
- Provided comprehensive academic support, including assistance with course planning, navigating the BME curriculum, and addressing general academic inquiries.
- Hosted bi-monthly meetings to check in with mentees, offer guidance, and share strategies for success in the BME program, fostering a supportive peer network.
- Helped students balance academic challenges with campus life, contributing to a smooth transition into university and improved retention rates in the BME program.

Spring Ahead Tutoring Center (Reinach, Switzerland)/ Mar 2020 - Aug 2023

Employed by Spring Ahead Tutoring Center as STEM Tutor

- Provided one-on-one tutoring in Mathematics, Physics, Chemistry, and Biology to students from Grades 7 to 11, adapting teaching methods to individual learning styles.
- Supported International Baccalaureate students with homework, exam preparation, and test-taking strategies, ensuring a thorough understanding of core concepts and contributing to their academic success.
- Seamlessly transitioned from in-person tutoring (2020-2021) to a virtual format for the remainder of the role, maintaining high-quality educational support and developing skills in online education delivery.

Additional Experience

Locaze / Aug 2022 - Current

CTO and Founding member of student venture working with Johns Hopkins Medical Institute

- Led the development of a mobile application designed to detect concussions through advanced eye movement tracking algorithms.
- Headed the tech sub-team as CTO, overseeing both front-end development of the app and back-end development of neural networks and additional scripts for eye movement analysis.
- Successfully submitted an IRB proposal to begin training and testing of the app on a population of high-school athletes, scheduled to commence in January 2024.
- Secured \$7500 in seed funding through successful participation in HopStart, Johns Hopkins Healthcare Design Competition, and Baylor New Venture Competition Finals.
- Submitted non-provisional design patent for the technology currently under review.

JHU Design Team / Mar 2023 - May 2024

Founding member of design team affiliated with the JHU Department of Biomedical Engineering

- Collaborated with innovative startup Mendaera and their team of clinicians to develop a cutting-edge device aimed at significantly reducing the duration of prostate biopsies.
- Contributed to the design process with the goal of alleviating patient discomfort by reducing the prostate targeting learning curve and time of biopsy retrieval process.
- Entered prototyping phase in December 2023 and began testing low-fidelity prototypes in March 2024.

Activities

Rockhoppers Climbing Club / Aug 2023 - Current

Member of university climbing club with weekly practices for bouldering and rope climbing.

Inter-Asian Council / Jan 2024 - Current

Member of university club organizing showcases/campaigns that promote discussion of Asian Pacific Islander Desi American (APIDA) identity and challenges facing the APIDA community.

Intermural Soccer Club / Jan 2022 - Current

Captain of intermural soccer team participating in semester tournaments for futsal and soccer.

JHU Tennis Club / Sep 2021 - Dec 2022

Member of university tennis club with weekly practices and occasional tournaments.

Honors and Achievements

Upsilon Pi Epsilon Honor Society (President)/ Nov 2023 - Current

Current President of UPE chapter in JHU, the International Honor Society for the Computing and Information Disciplines, hosting information and networking events for computer science students.

Alpha Eta Mu Beta Honor Society/ September 2024 - Current

Member of AEMB, the National Biomedical Engineering Honor Society, representing academic excellence and leadership in biomedical engineering.

Scouts BSA (Eagle Scout)